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Abstract. The dynamical critical exponent z is calculated using the finite size scaling 
method for the two-dimensional three-state Potts model with non-conserved dynamics. 
The value of z is found to be between 2.1-2.3, with the most likely value being 2.2. 

1. Introduction 

Recently, the dynamics of the two-dimensional three-state Potts model has received 
considerable attention. Fdrgacs et al ( 1980) calculated the dynamical critical exponent 
z for the two-dimensional three-state Potts model on a square lattice. They used a 
Migdal type of recursion method and obtained a value of 2.25 for z. Later Binder 
(1981) calculated the dynamic exponent A = uz as A = 1.9 for the two-dimensional 
q-state Potts model on a square lattice by analysing the relaxation of the order parameter 
in a Monte Carlo simulation and using dynamical scaling. His results imply that A 
does not seem to depend on the number of states q. The value A = 1.9 corresponds to 
t = 1.9 for the Ising model ( q  = 2)  and z = 2.28 for the three-state Potts model. Toboch- 
nik and Jayaprakash (1982) found z as z = 2.7 F 0.4 for the two-dimensional three-state 
Potts model on a square lattice using the dynamical Monte Carlo renormalisation 
group (DMCRG) method. Recently, Aydin and Yalabik (1984b) evaluated the dynamical 
critical exponent for the same model using a modified form of the DMCRG method 
(Jan and Stauffer 1982, Aydin and Yalabik 1984a). They found exactly the same value 
obtained by Tobochnik and Jayaprakash. 

In the present study, z is calculated for the two-dimensional three-state Potts model 
with non-conserved dynamics, using the finite size scaling method (Yalabik and Gunton 
1979, Nightingale and Blote 1980). The value of z is found to be between 2.1-2.3, 
with the most likely value being 2.2. 

In 0 2, the method and procedure are presented. The results and discussion are 
given in § 3. 

2. The method and procedure 

The Potts model can be defined through the Hamiltonian H of the form 
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where the summation extends over all nearest-neighbour sites, k is the Boltzmann 
constant, T is the temperature and Si represent spin variables on a lattice. K corfe- 
sponds to the nearest-neighbour coupling and has a critical value K,, K ,  = In( 1 + J 3 ) ,  
which is an exact result (Potts 1952). 

In this study, a standard Monte Carlo procedure (Binder 1981) iS used to simulate 
the dynamics of finite size Potts lattices and to calculate the average time-dependent 
spin correlation function C ( t )  which is given as 

C( t )  =((si( t + t’)S,( t ’ ) ) ) .  

Here (( . . . )) denotes Monte Carlo averaging over time t’ and spin sites i, j .  Si and Sj 
correspond either to neighbouring spins (nearest-neighbour correlation) or to the same 
spin (self-correlation). C( t )  is obtained for square lattices of sizes n = 2, 3, 4, 5, 6, 7, 
10, 16. 

Initially, a random spin configuration is generated and the system relaxes to 
equilibrium. After equilibrium is reached, the self and nearest-neighbour spin correla- 
tion functions are calculated as a function of time for each size of system. At sufficiently 
long times C( t )  is expected to relax with the largest time constant T of the system. In 
finite systems, the asymptotic behaviour of T as a function of n, at the critical temperature 
of the infinite system, can be shown by (Suzuki 1977) 

T -  n z .  (3) 

The time constant T was calculated exactly for n = 2 and used as a check for the 
Monte Carlo procedure. For larger size lattices, T was calculated from C ( t )  which 
was obtained by averaging over 5 X lo6 MCS of data for the 16 X 16 lattice and data 
covering larger times for smaller lattices. 

The log-log plot of T as a function of n is given in figure 1. The statistical errors 
are comparable with the size of the points on the figure. The points are expected to 
lie on a straight line for large n with the slope being the dynamical critical exponent 
z. The value of z thus obtained from figure 1 is between 2.1-2.3, with the best value 
being 2.2. The self and nearest-neighbour correlation functions give the same value 
for z. Because of the limits imposed by the available computer facilities, the correlation 
functions could not be obtained for sizes larger than n = 16. 
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Figure 1. Log-log plot of T against n. 
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3. Results and discussion 

In the present study, the dynamical critical exponent z for the two-dimensional 
three-state Potts model is calculated using finite size scaling. The value of z is found 
to be between 2.1-2.3, with the most likely value being 2.2. Systematic errors (which 
are difficult to estimate) arising due to the possibility that we have not used large 
enough lattices are not represented in this interval. 

Our estimate of z is consistent with the result z=2 .25  obtained by Forgacs et al 
(1980) and  z-2.28 calculated by Binder (1981), and  different from the results of 
DMCRG methods. The DMCRG method used by Tobochnik and  Jayaprakash (1982) 
gives a value for z, z = 2.7 T 0.4, which is exactly the same value found by Aydin and  
Yalabik (1984b). ( I t  should be mentioned that in our DMCRG study, z is evaluated 
from the order parameter relaxation data over a time interval which is sandwiched 
between the ‘early’ time region and the fluctuation region at large times (Jan and 
Stauffer 1982). A reanalysis of our previous data with the inclusion of earlier times, 
which were excluded in our original study, leads to a value of z close to the Ising value.) 

The main source of error in this study is not statistical, but arises due to the 
possibility that the system sizes may not be sufficiently large for equation (3) to hold. 
Hence the accuracy of the value of z we have obtained could be improved by going 
to larger size lattices. However, within the accuracy of this work, it is not likely that 
a value close to z = 2.7 can be obtained by this method using lattices of sizes comparable 
with the ones we have used. 
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